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We study the Kleinberg problem of navigation in small-world networks when the underlying lattice is a
fractal consisting of N�1 nodes. Our extensive numerical simulations confirm the prediction that the most
efficient navigation is attained when the length r of long-range links is taken from the distribution P�r�
�r−�, where �=df is the fractal dimension of the underlying lattice. We find finite-size corrections to the
exponent �, proportional to 1/ �ln N�2.
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Recently Kleinberg has studied the problem of efficient
navigation in small-world networks, based on local algo-
rithms that rely on the underlying geography �1,2�. Consider,
for example, a d-dimensional hypercubic lattice, consisting
of N nodes, where in addition to the links between nearest
neighbors each node i is connected randomly to a node j
with a probability proportional to rij

−� �here, and elsewhere,
rij = �ri−r j� denotes the Euclidean distance between nodes i
and j�. Suppose that a message is to be passed from a
“source” node s to a “target” node t, along the links of the
network, by a decentralized or local algorithm �an algorithm
that relies solely on data gathered from the immediate vicin-
ity of the node that holds the message at each step�, when the
location of the target is publicly available. Kleinberg shows
that when the exponent �=d an algorithm exists that requires
fewer than �ln N�2 steps to complete the task. If ��d, the
required number of steps grows as a power of N. Moreover,
no local algorithm will do better, functionally, than the
simple minded greedy algorithm: pass the message forward
to the neighbor node which is closest to the target �geo-
graphically�.

Kleinberg observes �2� that the above results generalize to
“less structured graphs with analogous scaling properties.”
Interest in such cases is practical, as the nodes of many real-
life networks �routers of the Internet, population in social
nets, etc.� are not distributed regularly. Here we test this
assertion for the case of fractal lattices, enhanced by the
addition of random long-range links as in the original Klein-
berg problem. We find that the results indeed generalize to
this case and that most efficient navigation is achieved when
the power exponent for the random connections is �=df, the
fractal dimension of the underlying lattice. Our numerical
analysis is sensitive enough to allow for a study of finite-size
effects. For a lattice of N nodes optimal navigation is at-
tained for an effective exponent ��N� that is smaller than the
idealized limit of �=df �when N→�� by as much as
1/ �ln N�2. Thus, corrections are substantial even for very
large lattices.

Consider a fractal lattice, such as the Sierpinski carpet �3�
�Fig. 1�, where, in addition to the existing links, each node i
is randomly connected to a single node j, selected from
among all other nodes with probability pij =rij

−� /�krik
−�. The

sum in the denominator runs over all nodes k� i and is re-
quired for normalization. If the fractal is finite, consisting of
N�1 nodes, its linear size is L�N1/df. The normalization
term then scales as

�
k

rik
−� � �

1

L

r−�rdf−1dr � 	�� − df�−1, � � df ,

ln L , � = df ,

Ldf−�, � � df .

�1�

The average distance between randomly chosen �s , t�
pairs is �L, so in the absence of long contacts a message
takes T�N1/df steps to be delivered �4�. Long-range contacts
reduce the 1/df exponent, but only when the exponent �
=df does the expected delivery time scale slower than a
power of N. The basic idea of Kleinberg’s argument, applied
to the case of fractals, is as follows �2�. For �=df, surround
the target node t with m shells of radii em−1�r�em, m
=1,2 , . . . . Suppose that the message holder is currently in
shell m; then, the probability that the node is connected by a
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FIG. 1. Small-world net based on the Sierpinski carpet. Shown
is a carpet of generation n=3. The nodes �open squares� are con-
nected to their nearest neighbors �not shown�. In addition, each
node i is connected to a random node j as described in the text. For
the sake of clarity, only one such connection is shown as an
example.
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long-range link to a node in shell m−1 is, according to Eq.
�1�,

��
em−1

em r−df

ln L
rdf−1dr =

1

ln L
.

The probability to reach the next shell �m−1� in more than x
steps is then ��x�= �1−1/ ln L�x, and the average number of
steps required to do so is �5�


x� = �
0

�

��x�dx � ln L .

Since the largest shell is for em=L, the number of shells
between the source and target is of the order of m=ln L.
Thus, the expected total number of steps required to reach
the target is ��ln L�2 �6�.

For 0���df, surround the target node t by a ball of
radius �=L�, �0���1�. The probability that a randomly
chosen node i has a long-range contact to a site j within the
ball is, according to Eq. �1�, �rij

−� /Ldf−��1/Ldf−�. Thus, the
probability that i connects to any node in the ball does not
exceed �df /Ldf−�=L�df−df+�. Since ��1, the source lies al-
most surely outside of the ball �in the limit N→��. Then,
any �-step path between the source and target must contain
at least one long-range connection into a node inside the ball.
But the probability that a node with such a connection is
encountered within � steps is smaller than �	L�df−df+�. If
this probability vanishes, as N→�, the expected number of
steps is bound to be at least �. This happens for �� �df

−�� / �1+df�, so the expected number of steps exceeds
L�df−��/�1+df�.

For ��df, the probability that a node has a long-range
connection longer than L
, �0�
�1� scales, according to
Eq. �1�, like

�
L


� r−�

� − df
rdf−1dr � L
�df−��.

Thus, the probability to jump a distance larger than L
 within
L� steps �0���1� is less than L�L
�df−��. If this probability
vanishes, as N→�, then the total distance covered cannot
exceed L�L
. Since the expected distance between source
and target is of order L, we need �+
=1. On the other hand,
the probability for steps longer than L
 vanishes when �
+
�df−���0. The two conditions yield �� ��−df� / ��−df

+1�, so the expected number of steps exceeds L�

�L��−df�/��−df+1�.
We have simulated navigation by the greedy algorithm in

small-world nets based on the Sierpinski carpet �Fig. 1�. A
finite carpet, constructed recursively to generation n, consists
of N=8n nodes arranged within a square of side L=3n. In
each run random nodes are selected as the source �s� and
target �t� and a path is sought between the two by the greedy
algorithm. To minimize computer time and memory, each
successive node and its random long-range connection are
constructed only as they are reached by the message. In this
way we were able to simulate carpets of up to generation n
=19 �L�1.2	109, N�1.4	1017�. For each value of the
exponent �, the expected number of steps was obtained from

averaging over 10 000 runs, apart from the largest lattice, of
generation n=19, for which the number of runs per data
point was reduced to 1000.

An example of the results obtained in this way is shown
in Fig. 2, where we plot the logarithm of the “time” T—the
average number of steps required by the greedy
algorithm—as a function of �, for nets of generation n=12,
15, and 18. Notice the parabolic shape of the curves, similar
to what is observed for the regular square lattice �1�, as well
as the increase in T as the lattice grows larger.

To extract further information, we have fitted second-
order polynomials to the ln T��� curves of Fig. 2. The fits
allow us to compute ��N�, the location of the minimum �or
the optimal long-contact exponent� for a lattice of N nodes,
as well as T�N�, the minimal time required, on average, to
deliver the message in a lattice of size N. In Fig. 3 we show
the dependence of T�N� upon the lattice size. While it is
quite hopeless to study the scaling T�N���ln N�2 numeri-
cally �since it requires a double-logarithmic function of N�,
the slope of ln T versus ln ln N is seen to vary slowly and
plausibly, converging to 2, as predicted by Kleinberg.

In Fig. 4 we show the dependence of ��N� upon N. The

FIG. 2. �Color online� Delivery time T as a function of the
long-contact exponent �. Plotted are results for the Sierpinski car-
pet of generation n=12, 15, and 18 �bottom to top�.

FIG. 3. �Color online� Delivery time as a function of size. The
logarithm of T is plotted against ln ln N. The data points are for
carpets of generation n=9,10, . . . ,19 �from left to right�. The
straight line of slope 2, corresponding to the theoretical prediction
T��ln N�2, is shown for comparison.
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optimal value of the exponent for long contacts varies very
slowly with the size of the lattice. Inspired by the scaling
T�N���ln N�2, we guess

��N� � ���� + A/�ln N�2, �2�

where A is a constant. This functional form, as well as the
predicted limit of ����=limN→���N�=df, for the case of an
infinite lattice, is well supported by the data. The broadness
of the ln T��� curves �Fig. 2� makes it difficult to pinpoint
their minima ��N�, leading to the large fluctuations evident
in the plot. �On the other hand, T�N� can be determined quite
accurately from the data; see Fig. 3.�

In conclusion, we have studied navigation by the greedy
algorithm on fractal small-world networks with random
long-range connections taken from a power-law distribution.
Our numerical results support the prediction of Kleinberg
that optimal navigation occurs when the long-contact expo-
nent is �=df, the fractal dimension of the underlying lattice.

An important effect are the corrections due to the finite
size of the networks involved, expressed in Eq. �2�. Even for
our largest net, of N�1.4	1017 nodes, the correction to � is
as big as 1.5 %. More importantly, the correction is huge for
sizes relevant to everyday life. For nets of 107 nodes �com-
parable to the size of the Internet, say�, the correction is
nearly 10 % �7�. It remains an open question whether correc-
tions scale as 1/ �ln N�2 generically, as observed in our case.

We have also carried out simulations on a small-world
network based on the Sierpinski gasket �3�. The results are
similar to the ones shown here for the carpet; however, we
observe a small but persistent discrepancy between the ex-
trapolated �����1.573 and df= ln 3/ ln 2�1.585 of the Si-
erpinski gasket. For the ease of programming, we had em-
bedded the gasket in a square lattice, thus distorting its
original shape �of an equilateral triangle� to a right-angled
triangle. This introduces an anisotropy in the distribution of
long-contact links: connections along the stretched direction
are less favorable. We suspect that this anisotropy is the
source of the discrepancy. Anisotropy effects will be consid-
ered in detail in future work.
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�4� We assume that the chemical distance �the shortest number of

links connecting two nodes� is proportional to the Euclidean
distance. We also assume that the fractal in question does not
have “overhangs”—nodes where the message gets stuck—
unless one passes it backwards. If the typical size of overhangs
does not increase with lattice size, an aptly modified greedy
algorithm achieves the same results stated here. The situation
is unclear when overhangs grow with lattice size �as in the

incipient infinite percolation cluster, say�.
�5� Let p�x�dx be the probability to reach the next shell in between

x and x+dx steps. Then, ��x�=
x
�p�x�dx, while 
x�

=
0
�xp�x�dx. Integration by parts of the last relation, in the

limit of L→�, yields the result in the text.
�6� With a little more care one could show that �ln N�2 is an upper

bound for the expected number of steps, in a similar way as
Kleinberg does for the two-dimensional square lattice �2�.
Likewise, the expected number of steps cited for ��df can be
shown to be lower bounds, but we omit rigor, for simplicity.

�7� A correction of similar size can be seen in �1�, for a square
lattice of 20 000 	20 000 nodes.

FIG. 4. �Color online� Optimal long-contact exponent. The ex-
ponent ��N�, required for optimal navigation in a finite network of
N nodes, is plotted against 1 / �ln N�2, for carpets of generation n
=9,10, . . . ,19 �right to left�. The arrow pointing at the expected
limit of ����=df= ln 8/ ln 3 is shown to guide the eye.
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